http://www.baiven.com/baike/220/261307.html射电天文所研究的对象,有太阳那样强的连续谱射电源,有辐射很强但极其遥远因而角径很小的类星体,有角径和流量密度都很小的恒星,也有频谱很窄、角径很小的天体微波激射源等。为了检测到所研究的射电源的信号,将它从邻近背景源中分辨出来,并进而观测其结构细节,射电望远镜必须有足够的灵敏度和分辨率。
分辨率指的是区分两个彼此靠近的相同点源的能力,因为两个点源角距须大于天线方向图的半功率波束宽度时方可分辨,故宜将射电望远镜的分辨率规定为其主方向束的半功率宽θ。θ为电波的衍射所限,对简单的射电望远镜,它由天线孔径的物理尺寸D和波长λ决定。当孔径大于波长时,可由下面简单关系式近似给出:
θ ≈1.22λ/D(弧度)≈4190λ/D(角分)
≈2.516×105λ/D(角秒)。
灵敏度取决于射电望远镜天线有效面积 A(平方米)、接收机和天线的噪声性能,即系统噪声温度TS(K)、接收机有效噪声带宽△v(赫)和信号检测积分时间 τ(秒)。通常对经典射电望远镜,用可检测的最小功率流量密度Smin来表征其灵敏度,并有如下关系:
射电望远镜按设计要求可以分为连续和非连续孔径射电望远镜两大类。为了观测弱射电源的需要,射电望远镜必须有较大孔径,并能对射电目标进行长时间的跟踪或扫描。此外,还必须综合考虑设备的造价和工艺上的现实性。按机械装置和驱动方式,连续孔径射电望远镜(它通常又是非连续孔径的基本单元)还可分为三种类型。
(1)全可转型或可跟踪型:可在两个坐标转动,分为赤道式装置和地平式装置两种,如同在可跟踪抛物面射电望远镜中使用的。
(2)部分可转型:可在一坐标(赤纬方向)转动,赤经方向靠地球自转扫描,又称中星仪式(见带形射电望远镜)。
(3)固定型:主要天线反射面固定,一般用移动馈源(又称照明器)或改变馈源相位的方法,使单反射面或天线阵的方向束移动。
射电观测在很宽的频率范围进行,检测和信息处理的射电技术又远较光学波段灵活多样,所以射电望远镜种类繁多。还可以根据其他准则分类:诸如按接收天线的形状可分为抛物面、抛物柱面、球面、抛物面截带、喇叭、螺旋、行波、偶极天线等射电望远镜;按方向束形状可分为铅笔束、扇束、多束等射电望远镜;按工作类型可分为全功率、扫频、快速成像等类射电望远镜;按观测目的可分为测绘、定位、定标、偏振、频谱、日象等射电望远镜。关于非连续孔径射电望远镜,主要是各类射电干涉仪。