sct
https://world.taobao.com/item/535744397863.htm校準就是調節望遠鏡的光學器件使之光軸對齊.光學書上講的那些望遠鏡的設計原理及性能,都有一個默認的前提,那就是光軸是完美對齊的.儘管很多書上沒有講光軸沒有對齊帶來像質的損害,但我們必須知道一臺牛反光軸沒有對齊會讓它的性能大打折扣。另外,沒有任何一臺望遠鏡可以讓它的光軸對齊很長一段時間,即使它是已經在工廠校準過的。
校準是一種值得考慮的提供鏡子性能的方法。通常,設備變形了,在高分辨率下的像質你肯定不能接受;圖像的後期處理也無法補償光軸不正帶來的像質的損失.校準並不是鏡商和純理論主義者的多餘技巧.它實際上和音樂器材的音律一樣重要,光軸不正的圖像就像走調鋼琴產生的聲音一樣可怕.很多不願意去校準的愛好者最後放棄了牛反而選擇一臺合適口徑的折射,就是這個原因。
校準是牛反的很麻煩的地方;它是SCT聲譽平庸的一個主要原因.這些望遠鏡對光軸非常敏感;校準螺絲的稍微一動就能讓整個光軸偏離.正是這個原因,所以小口徑的折射鏡看起來衍射條紋更完美,拍出比大口徑牛反更清晰的行星照.好的光學性能在微小的光軸誤差面前就會瓦解.
這些被建議的校準方法,精度到底怎麼樣呢?
因爲信息的缺少,很多牛反愛好者都不敢去動他們的鏡子.即使敢,在調整副鏡到中心時就停止了.而對一部光軸非常歪的鏡子來說,這一步非常重要,但還遠遠不夠.即使調整好了副鏡,行星的圖像仍然能丟失50%的對比度。
下面講的校準的方法是最精確的;它可以讓光軸矯正到只有非常小,幾乎可以忽略的誤差.這種方法就是在高倍下通過散焦和聚焦來看恆星的衍射圖,衍射圖案會告訴我們光軸是否歪了.只要有一個好的目鏡和巴羅鏡就可以實現.在高倍下觀察恆星也是最好的方法去了解當前的環境條件是否適合觀星或者拍照。因爲這種方法不僅可以知道設備是否正常工作(氣流平衡,沒有振動等等),而且比通過觀察行星來測試大氣的擾動更加精確.
什麼時候檢查光軸正不正?
那些認爲SCT不需要經常校準的人們,肯定沒有認識到這一類設備所要求的精度。它的精度是如此之高,以至於放在車子裏出去一趟,光軸就會有小的偏離,有時候是完全歪掉。甚至把鏡筒指向不同,光軸偏離也會不一樣(一個有趣的實驗是通過赤道儀指向同一個顆恆星,然後移動赤道儀的赤經軸使之從左到右經過視野,觀察光軸的偏移).這就是爲什麼要選一顆恆星去校準,而不是感興趣的目標(木星或者月亮).如果在深空觀測時,覺得微小的偏離可以容忍,然後轉向行星觀察時就不校準了,這樣做其實風險很大。好的方法是每次觀測之前,都檢查一下光軸,就像開車出遠門前檢查郵箱和輪胎一樣!
對SCT來說,唯一可以調節的就是它的副鏡.由三個螺絲(推或拉)去調節它的位置,有些鏡子三組螺紋(推和拉).校準的過程就是不斷的重複(檢查-調整-檢查-調整....),除了需要注意下面這幾條,整個過程是沒有難度和風險的:
-中間那個大的固定住副鏡的螺絲,永遠都不要碰
-那三個微調螺絲旋進旋出都要非常溫和,不能哪個太鬆也不能太急
-如果把其中一個螺絲旋出,另外兩個則要旋進
-旋轉的時候一定要動作小:一個很不正的鏡子可以一次旋半圈,但最後調節的時候還是要非常小的動作.
-每次旋轉,恆星會因爲這個調整而有所移動,必須再次把它拉到中央.
對牛反來說,校準通常分兩步走:先把副鏡調整到合適的位置(用校準目鏡),然後再來調主鏡.下面來具體說說如何調主鏡.
當設備已經氣流平衡了纔開始校準.因爲如果沒有氣流平衡,在鏡筒裏頭的空氣就會幹擾到衍射圖案,最終使得校準過程變得困難,甚至失敗.
如果沒有帶來光學像差的話,天頂鏡可以派上用場.這種附件通常會移動設備成的像:成像中心不再是同一個地方.如果是通過目視來校準,就最好加上天頂鏡。這樣恆星就會精確的在目鏡的中心。如果是準備通過攝影或者CCD來校準,就要讓恆星的成像在底片或者CCD芯片的中央,而不管它是否在天頂鏡的中央.此外,天頂鏡的加入,會顛倒圖像,你必須重新考慮如何調節微調螺絲去修正衍射圖像。
下面的圖是電腦生成的,但它是一副典型的衍射圖案。施密特卡式折反,卡塞格林式或者Dall-Kirkham折反和牛反(消慧差的)都適用。其他光軸不正的鏡子(折射或者Ritchey-Chrétien折反)會有不同的衍射圖案(會有散光和慧差,甚至散光會覆蓋掉慧差了)。然而,不管是什麼設備,對齊光軸後都會得到一個均勻的同心圓的衍射圖案.