https://www.cnbeta.com/articles/science/899239.htm在2019年5月10日的《天文学和天体物理学》杂志上,发表了一项由巴黎天文台的研究人员经过几十年观测而得的研究结果。
根据“新视野号”探测器于2015年收集的数据,科学家对冥王星掩星过程的物理参数进行了解释,这些参数对于更好地了解冥王星的气候,以及预测这颗矮行星未来的恒星掩星事件非常重要。
和地球类似,冥王星的大气层主要也是由氮气构成,但比较仅限于此。冥王星轨道在海王星之外,要花248个地球年才能绕太阳转一圈。在冥王星的一年中,它与太阳的距离在30至50天文单位之间变化,导致了极端的季节循环。
冥王星表面温度极低,可低于-230℃(40°K)。那里存在一种固态-气态平衡,其中稀薄的大气基本为氮气,与表面冰层共存。据估计,如今冥王星的氮蒸气的压力稳定在1.3帕斯卡左右(而地球上的压力约为10万帕)。
由于冥王星的倾角(极轴与轨道平面之间的夹角)为120度,因此其两极会出现连续数十年的白昼,然后是同样漫长的极夜。这导致了冥王星表面挥发性物质如氮、甲烷和一氧化碳的重新分布,并形成复杂的物质循环。冥王星在1988年到达昼夜平分点,然后在1989年移动到近日点(30au)。从那时起,这颗矮行星就不断地远离太阳,在2016年时距离达到了32ua,这意味着它的平均日照减少了25%。
预测与结果的矛盾
1988年至2238年冥王星表面的大气压力随时间的变化,洋红色曲线为南半球存在氮储集层的情况
如果你以为冥王星的大气压会因此急剧下降,那就想得太简单了。根据氮的气-冰平衡,表面每降低一个开氏度,气压就应该降低一倍。然而观测结果恰恰相反。2019年5月10日发表在《天文学和天体物理学》杂志上的这篇文章提供了证据。文章中分析了近30年来在冥王星北半球春季观测到的十几次恒星掩星,发现1988年至2016年间,冥王星的大气压增加了三倍。
自20世纪90年代以来,冥王星的全球气候模型(GCM)就已经将这种自相矛盾的情况考虑在内,但该结果并不确定,只是众多情况之一。模型的几个重要参数仍然受到观测结果的限制。如今,通过这些来自地球的恒星掩星观测结果,加上2015年7月美国国家航空航天局(NASA)新视野号(New Horizons)探测器飞越冥王星时收集的数据,天文学家可以描绘出更加精确的场景模型。
新视野号绘制了这颗矮行星表面冰层的分布和地形,揭示了一个直径超过1000公里、深4公里的巨大盆地,位于冥王星赤道附近,纬度在25°S到50°N之间,称为“史波尼克高原”(Sputnik Planitia)。该盆地将冥王星大气中一部分可用的氮锁住,形成了一个巨大的冰川。这才是冥王星气候的真正“心脏”,通过氮的升华,它可以调节这颗矮行星的大气循环。