http://tamweb.tam.gov.tw/v3/tw/content.asp?mtype=c2&idx=1115小工程巧轉乾坤 紅外望遠鏡轉行偵查系外行星
冷卻劑用完,故事還沒完。換上當初有備而來的後援方案,Spitzer繼續執勤。這座望遠鏡就在被動式冷卻系統環境下,繼續讓一組紅外相機仍可在超低溫下繼續作業,這個所謂超低溫,大約是攝氏零下244度(換算為絕對溫度等於29度K)。在紅外照相機高靈敏度沒有打折的情況下,Spitzer演奏出不再極度酷冷的二部曲。雖然說是沒那麼冷,別忘了,以地球標準來說,這個溫度仍然是「冷到不行」。
它用什麼來保持低溫呢?撇步一是,將背向太陽的那面望遠鏡的殼,漆成黑的,讓望遠鏡的熱能盡量散發太空,二是在面向太陽那面殼塗上亮亮的一層,使太陽光和太陽能面板產生的熱會直接從表面反射掉。這個Spitzer紅外望遠鏡首開風氣之先的創舉,在後繼太空任務中從此成為廣受採用的標準做法。
讓Spitzer完美變身成「系外行星偵查隊」的一員需要透過一些巧妙的喬裝易容術,尤其它早已進入太空中的軌道許久,這些後續的工程動作更不容易進行。即便它的穩定度相當高,指向恆星時,偶爾仍有些微小的晃動,這讓恆星以光點形式經過相機上的某一點像素時,仍會有些輕微的亮度起伏,這兩項因素都為測量掩星現象帶來難題,測量掩星現象本身的精細度要求就是很高。
解決之道,首先要找出哪裡出了問題。如果說望遠鏡會抖的話,事實上它抖得很規律,每小時一次。這個週期正好和一組加熱器的工作週期是相同,加熱器的作用是要讓望遠鏡上的電池不低於特定溫度。加熱器造成星軌追蹤器和望遠鏡中間的一支支架略彎,影響所及,望遠鏡和受追蹤的恆星間之相對位置就會微微抖動。
到了2010年10月,工程人員已確認到,加熱器工作週期並不需要維持每小時一次,縮短到30分鐘即可,目標溫度也可以只達到一半就夠用,這樣,晃動幅度先砍一半。
這個結果並沒讓他們滿足太久,到了2011年9月,工程師又把Spitzer望遠鏡上指向控制參考用的感應相機Peak Up也改良升級。這臺Peak Up照相機在任務初期本是用來協助收集並集中紅外光,讓光路對準到光譜儀,執行星軌追蹤儀例行校準用,可讓望遠鏡對得更準。望遠鏡本來在瞄準恆星或天體時,本來無可避免地就會前搖後晃,考慮到這個晃動變因,把光會進到紅外相機的哪裡做到最好的控制,也就成為精確測量的關鍵之一。幫Peak Up相機完成了升級,天文學家能精確地將來自恆星的光點集中在像素正中央位置。
但是這個項目改良升級完畢,他們又找到著墨之處,甚至為相機上的個別像素的表現優劣都製圖追蹤,基本上他們發現有一個「好球區」會專門產出品質穩定的觀測結果。由於Spitzer做系外行星觀測時,所瞄準的目標有90%是比相機上的一個像素更小,甚至僅有像素的1/4大,好好運用紅外指向瞄準像機,基本上就能把定位弄得很精準,準到,直接能把觀測目標送進像素的「好球帶」中,以進行時間夠長的曝光。
所以,總結上述三項成果:修改的加熱器工作週期、升級的紅外指向集光相機、個別規劃每顆像素的好球帶,加總起來,就讓Spitzer的穩定性和指向精密度直接向上跳了二級,能以特優級的靈敏度測量系外行星掩星時微小變化。
也是經由這些工程上的精益求精,Spitzer轉型成一座系外行星望遠鏡,未來也將協助系外行星科學貢獻許多深度的發現。(Lauren譯)