USNC-Tech 公司使用 核发动机
https://familystar.org.tw/index.php?option=com_smf&Itemid=35&topic=34718.0NASA 核動力火箭 2035 年奔赴火星
https://technews.tw/2021/01/04/nasa-nuclear-powered-rocket-headed-to-mars-in-2035/2020 年 1 月 21 日,美國能源部核能辦公室在其官網對「核熱推進」進行了一次簡單的 Q&A 科普。據介紹,「核熱推進」有幾大特點:
比化學火箭更有效:核火箭的能量密度、效率都更高。
不會在地球上使用:其目的不是產生離開地球表面所需的推力。
更具靈活性:可將前往火星的時間最多減少 25%;減少太空人暴露在宇宙輻射下的時間;可使發射窗口期增長;不依賴於軌道排列;必要時太空人可中止任務並返回地球。
此外,還存在另外一種系統:「核電推進」(Nuclear Electric Propulsion),其工作原理是利用大功率核裂變反應堆發電,將核能轉為電能。據了解,核電推進質量效率相當之高,約為核熱推進的 3 倍。
這類系統最為常見的例子,包括我們熟知的採用核動力設計的 NASA 「好奇號」和「毅力號」火星車。就拿「毅力號」來講,其核動力源「多任務放射性同位素熱電發生器 MMRTG」由美國能源部提供,主要是利用鈽 238 原子核衰變釋放的熱量來產生 110 瓦的電能。
自然,核動力有著無可比擬的優勢,但也有不小隱憂,尤其是核輻射對太空人健康可能造成的威脅
....
...
如果想要盡快奔赴火星並返回,核動力推進系統可以派上用場,而需要改進的一項關鍵技術就是燃料。
為此,NASA 正在與商業公司合作,為未來可能的核動力載人太空任務做努力。目前已有兩家公司表示,他們的燃料對於一個安全、高性能的反應堆來說足夠靠譜。甚至於其中一家公司已經向 NASA 提交了詳細的計畫書。
這兩家公司,一是總部位於西雅圖的超安全核技術公司(Ultra Safe Nuclear Corp. Technologies,USNC-Tech),二是總部位於弗吉尼亞州林奇堡的 BWX 技術公司。
一般來講,火箭要想有足夠的推力,需要武器級別的高濃縮鈾——雖然商業發電廠的低濃縮鈾燃料使用起來會更安全,但在酷熱的溫度下,在極具活性的氫的化學攻擊下,它們會變得脆弱並分解。不過,USNC-Tech 使用的鈾燃料濃度低於 20%,含有分散在碳化鋯基體中的微小陶瓷塗層鈾燃料顆粒,透過放射性裂變熱量逸出。
USNC-Tech 工程總監 Michael Eades 表示,這一濃度比動力反應堆的濃度高,但不能用於一些邪惡目的,因此極大地降低了核擴散的風險。
另一家 BWX 技術公司也在研究類似的陶瓷複合燃料的設計方案,此外還在研究一種封裝在金屬基體中的替代燃料形式。BWX 公司先進技術部門總經理 Joe Miller 表示,自 2017 年以來,該公司就已開始研究反應堆設計。
與此同時,做為美國能源部的國家實驗室,普林斯頓等離子體物理實驗室也在進行嘗試,他們提出了一個名為「直接聚變驅動」(Direct Fusion Drive)的概念。
實際上,主流的核聚變使用的是氚燃料,但普林斯頓等離子體物理實驗室正在努力製造一種依賴於在高溫等離子體中氘原子和氦-3 之間的聚變反應堆,這種聚變產生的中子很少,可以將聚變等離子體加熱到攝氏 100 萬度。簡單來講,相比傳統的聚變,這種方式需要的燃料更少,而且設備也只有傳統聚變的千分之一大。
普林斯頓等離子體物理實驗室科學家Samuel Cohen 表示:
通往小型、安全的核動力火箭,核聚變反應堆是另一條路。我們不喜歡中子,它們就像是把鋼鐵等結構變成了具有放射性的奶酪。
理論上講,聚變推進的性能遠超過裂變推進,因為聚變反應釋放的能量高達核聚變的4 倍。然而這一技術還不成熟,還面臨著幾大挑戰,包括生成等離子體、將釋放的能量轉化為直接噴射廢氣等等。Jeff Sheehy 表示:
在 21 世紀 30 年代末之前,這項技術不可能用於火星任務。
不過 NASA 及合作夥伴也在一點點趕進度,比如 USNC-Tech 已經基於其新燃料製造了小型硬件原型。USNC-Tech 官方表示,趕在 2027 年之前,將會有一個演示系統發射,隨後將建立一個全面的火星飛行系統,更好地推動 2035 年的火星任務。
核火箭未來將如何發展,讓人拭目以待。